Journal of Applied Mechanics and Technical Physics, Vol. 11, No. 4. 2000

OPTIMIZATION OF THE EARTH REENTRY TRAJECTORY
OF A BLUNTED BODY
BY THE INTEGRAL HEAT FLUX

V. Yu. Kazakov, S. V. Peigin, and S. V. Timchenko UDC 533.5:533.6.011

The paper deals with optimization of the FEarth reentry trajectory by the magnitude of the
total convective heat flur at the stagnation point of a blunted body. The equations of a thin
(hypersonic) viscous shock layer taking into account the nonequilibrium nature of chemical
reactions and multicomponent diffusion are used as the initial mathematical model for heat
fluz caleulations. The optimal solution is obtained by an effective robust method using the
basic ideas of genetic algorithms.

Introduction. As is known, when a body reenters the dense atmospheric layers of the Earth, the heat
fluxes to its surface are very great. Therefore, the design of reusable spacecraft involves the complex problem
of its thermal protection. In this case, the solution of the problem of decreasing the level of thermal load
on spacecraft implies determination of the reentry trajectory and selection of spacecraft design (aerodynamic
characteristics, type of heat-protection svstem, etc.).

The general solution of the complete problem of trajectory optimization by the thermal load on the
spacecraft surface reduces to the joint solution of mechanical and gas-dvnamic problems. The mechani-
cal problem is the optimal control problem for the ordinary differential equations of motion of a material
point in the atmosphere [1-4], which includes aerodynamic coefficients. The gas-dynamic problem includes
a calculation of the three-dimensional flow around the entire surface of the spacecraft taking into account
physicochemical processes (thermodynamic and chemical nonequilibrium, radiation, etc.), and the aerody-
namic coefficients of the first problem are evaluated during solution of the second problem.

Because it is extremely difficult to solve the present problem in a complete joint formulation, extensive
use is made of various approximate approaches in which the mechanical and gas-dynamic parts of the problem
are separated from each other. For the aerodynamic coefficients, various approximations.are employed [2] or
these coefficients are treated as parameters of the mechanical problem that permit one to study the so-called
reference trajectories. In the optimization problem, depending on the formulation, the integrands for the
integer function are approximations along the trajectory for the heat flux to the entire surface of the body
or at some points on the body surface (more often, at the stagnation point) {2, 5].

The following parameters were determined in the present paper.

1) The reentry trajectory of a blunted body of specified shape into the Earth’s atmosphere along which
the total heat flux at the stagnation point of the body has a minimum and the equilibrium temperature of
the body surface does not exceed a prescribed value.

2) The trajectory along which the maximum equilibrium temperature of the body surface at the
stagnation point is minimal. As the initial gas-dynamic model for determining the heat flux to the body
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surface, we use the equations of a thin (hypersonic) viscous shock layer (TVSL) taking into account chemical
nonequilibrium and multicomponent diffusion. This model gives high accuracy for altitudes of 100-50 km
and velocities of 8-2.5 km/sec [6]. The TVSL equations are solved using a highly effective computational
algorithm [7], which is based on a difference scheme of the fourth order of accuracy [8]. The variational
problem that arises in determining the optimal trajectory is solved by an effective robust method using the
basic ideas of genetic algorithms (GA) [9, 10]. This method employs the principles of evolution and heredity
and examines the “population” of possible solutions of the problem that is subjected to the three main
“senetic” operators — selection, crossing, and mutation.

Formulation of the Problem. We consider the motion of spacecraft that reenters the Earth's
atmosphere, making the common assumptions for such problems [2]: The Earth is a sphere, the gravitational
field is central, the rotation of the Earth is absent, and the atmosphere is immobile. The trajectory lies in the
plane of the large circle containing the initial vector (the reentry velocity vector). Variation in the altitude does
not lead to marked changes in the gravitational force and centrifugal force. The atmosphere is isothermal, and
the density distribution with the altitude is defined by the formula p = pg exp(—H/H,,,), where H,,, = 7.11 km.
The reentry is performed from the orbit of an artificial satellite of the Earth (Vj = 7.8 km/sec), thrust is
absent, and the mass of the spacecraft M is constant. In view of this. the equations of motion for atmospheric
descent of spacecraft in a moving coordinate system are ordinary differential equations of the third order in
time (equations of flight dynamics) for the altitude H, the speed V', the downrange capability L, and the
slope of the velocity vector to the plane of the local horizon « under specified initial conditions Hy, V. Lo,
and g at time tg and with controls — the ballistic factor o(t) and the lift-to-drag ratio K'(t) [2].

The optimization problem is formulated as follows: to find control functions o(t) and K'(¢t) that provide
for a minimum for the functional

ty
Q(K,0,t;) = min/q(H(f),V(t). R* k. kyi....)dt (1)
0
under the constraints
|V(t)| < ag, T < T, (2)

where q(H(t).V (), R*, k, ki, - ..) is the magnitude of the heat flux at the stagnation point on the surface of
the spacecraft that moves with speed V() at altitude H(#) and has ratio of the principal curvatures k, R* is
the characteristic linear dimension of the body, g is the free-fall acceleration, ky; ({ = 1,...,N — 1) are the
known constants of catalytic activity of the surface, and T, is the equilibrium temperature of the surface at
the stagnation point. The constants a and Ti®* are chosen from practical considerations.

The controls A'(t) and o(t) are piecewise-smooth functions that are determined by the type of spacecraft
(“ballistic” type, “lifting-body” type, “space airplane” type, etc.) and the methods of control (using the
ballistic paraumneter, angles of attack, etc.) [4]. Therefore, the optimization problem (1), (2) should be solved
taking into account the particular spacecraft characteristics, which impose limitations on the control law.

The problem of optimization of the spacecraft reentry trajectory by the heat flux can be formulated
differently: in the space of continuous functions V(t) and H(t), where 0 < t < ¢, it is required to find a pair
of functions V' (t) and H(t) such that they provide for a minimum for the functional

t
Q(V,H,t|) = min / q(H(t),V(t),R* k. kyi....) dt (3)
0
under the specified constraints on the maximum acceleration and temperature of the body surface (2).

In problem (2}, (3), it is not required to know the design features of particular Spaégcruft, and, in this
sense, it is more general than problem (1), (2). However, additional limitations should be imposed on the
range of admissible values to eliminate trivial solutions and solutions that are obviously not integral curves
of the flight-dynamics equations [2] and are of no practical interest. The obvious conditions at the boundary
points are
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Here the reentrv time #) is counstant or varies from 0 to the maximum reentry time f,,. and can be an
optimized parameter.

The other additional limitations on the range of admissible values of problem (2), (3) are consequences
of the flight-dynamics equations [2]. In particular, it is necessary to impose an additional limitation on the
acceleration, i.e.. the deceleration cannot be greater than the deceleration caused by the maximum drag force
for a given bodv at a prescribed altitude:

. S* V2
Vi< =5 (5)
Here 8* is the characteristic region of the spacecraft. Under the verv general assumptions on the spacecraft
characteristics, the solution of problem (3) subject to constraints (2). (4). and (5) gives a certain trajectory
that is possible for an appropriate spacecraft design and suitable methods of control.

Let us now calculate the integrand in (3). As the initial mathematical model for the caleulation of the
heat flux to the critical point on the body surface. we use the TVSL model. The TVSL equations are the
asymptotic forms of Navier-Stokes equations and they describe adequately the flow pattern from the body to
the shock wave for ¢ — 0, Re — 20, and K = ¢ Re > O(1). Here ¢ = p,,/p* is the ratio of the incident-flow
density to the characteristic density in the shock layer and Re = VR*/u* is Reynolds number (¢* is the
characteristic viscosity in the shock layer).

A comparison with more accurate models and experimental data shows that. being relatively simple,
the TVSL model provides good accuracy (up to 5% for heat fluxes) in the case where the viscous shock layer
is thin [6]. These conditions arise for altitudes and velocities that correspond to the upper part of the reentry
trajectory in the neighborhood of the critical point of a smooth blunted body.

The heat flux to the stagnation-point is defined by

q(H @), V), R* k. kyiv--.) = 0.5pV3X (H(#). V(). R* k, ks - . .)- (6)

Here X, is the dimensionless heat flux to the surface. which is determined by numerical solution of the
TVSL equations taking into account nonequilibrium chemical reactions in air, multicomponent diffusion. and
heterogencous catalytic reactions [7]. As the conditions on the boundary of the body for the energy equation.,
we use the balance relation for the equilibrium temperature.

The convective heat flux to the critical point of a blunted body is usually determined from the Fay -
Riddel formula {11, 12], which is obtained by approximation of numerical calculations of the laminar boundary
layer near an ideally catalytic surface with equilibrium chemical reactions. In this case, the analytic nature
of the integrand makes the solution of the optimization problem much simpler. However. the maximum heat
fluxes at the stagnation point fall in the region of the gliding trajectory at altitudes of 80-65 kin, where the
Revnolds numbers are relatively small and the chemical reactions are of a strongly nonequilibrium nature [6].
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Figure 1 shows the heat fluxes to the critical point of a sphere with B* = 0.5 m obtained for an ideally
catalytic surface (curves 1-3) and a noncatalytic surface (curve 4) at Ty, = 1200 K (curves 1 and 2) and for
the case of equilibrium surface temperature (curves 3 and 4) using the Fay-Riddel formula (curve 1) and
numerical solution of the TVSL equations (curves 2-4) for the trajectory of [13] (curve 5 is the speed along
the trajectory). A comparison of curves 1 and 2 shows that calculations using the Fay—Riddel formula give
an error of up to 40% on the most heat-loaded segment of the trajectory.

Method of Solution. To solve the optimization problem (3) subject to constraints (2), (4), and
(5) we employ the method of [9, 10], which includes deterministic and probabilistic approaches and uses
the main ideas of genetic algorithms [14-16]. The latter are search algorithms based on the mechanisms of
natural selection and genetics. They combine natural selection among string structures with partly ordered
exchange of information. Being probabilistic, genetic algorithms are nevertheless not a version of random
search because here the previously obtained information is effectively used in selection of new points with
optimal properties.

These algorithms are iterative. In iteration ¢ (generation t), an ordered set P(t) = {zf,...,z%} is
considered (population of individuals). Each individual (potential solution of the problem) is shown in a
certain, possibly rather complex, data structure S. Each solution z! is evaluated, and the measure of its
suitability is determined. Next, a new population (iteration or generation ¢ + 1) is formed.

At the first step of this formation (step of selection) there is selection of individuals possessing the
best qualities. At the next step, some of the selected individuals are transformed by “genetic operators” —
mutation and crossing. The mutation operator m; generates a new individual by a relatively small change in
one individual (nm;: S — ), and the crossing operator ¢; performs stronger transformations and generates a
new individual by combining parts from several (two or more) individuals (¢;: S---S — S). After a number
of iterative steps, the algorithm converges to the best of the possible solutions.

An important feature of genetic algorithms is their robustness: they converge to a global optimum,
which is important for problems whose integer function has local extrema. In contrast to the classical gradient
methods of optimization, genetic algorithms do not require strong limitations on the smoothness of the integer
function and allow one to find an optimum even for the case of a discontinuous integer function.

Genetic algorithms, proposed at the end of 1960s and substantiated theoretically in 1975 [14], have
been widely used (by virtue of their universality and high effectiveness) to solve search and optimization
problems in various fields of science and engineering [15].

To solve the above problem, we use a version of the “material” genetic algorithm in which the data
structure S is a set of strings of finite length, whose components are real numbers.

The required functions V(t) and H(t) are sought in the class of Besier splines of the mth order, which
are expressed in terms of Bernshtein polynomials B;"(t):

m
T m!

R =Y BIR, B =Ca(2) (1-2)" ci-

=0 71 i(m =)

R(7) = {H(7),V(7)}, P, ={H;,V;}, i=0,....,m, 0K 7<7.
Here 7 = #/t* is dimensionless time, t* is the characteristic time, and P; are the coordinates of the control
points. The Besier curve is defined by the coordinates (H;, V;) of the points P; and the dimensionless reentry
time 7.
In our case, the first point Py = (Hp. Vo) and last point P, = (H*, V™) are fixed, and this corresponds
to conditions (4). Thus, the string S = (a1.4a2,...,02m—1), where

a=H;, 1<i<m-1; a=Viopy1, m<£Li<2(m-1); aom—1 =7

defines the reentry trajectory in the class of Besier splines of the mth order. According to GA, the set S'is a
chromosome and its element a; is a gene. In this case, a; vary from the lower bound min; to the upper bound
max;. To take into account the constraints on the admissible solutions (2), (5) in the algorithm for searching
for the optimal solution (3), we used the modified integer function
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@ +ax(IV(H)l/g - a), V(1)) > ag,

(2* qs + q}i(ﬂwax - Tw)/Tgmx’ Tw > Iﬂgmx’
@ + a6V (6)|/g — S*p(OVE(£)/ (20 g)), V()] > S*p(HVE(H)/(2M),
Q. otherwise.
The coefficients q; (i = 1, ..., 6) were selected so that with violation of any of the constraints, the value

of the modified integer function Q* was obviously larger than Q. In addition, by choosing ¢;, it is possible to
control the relative significance of the constraints. This approach allows one to extend the range of search of
the solution and to evaluate the integer function with violation of the constraints.

Thus, the method includes the following algorithmic steps:

1. The initial flight paths are selected in a random fashion, and the initial “population” P(0) =
{&  ..S,}, consisting of N, individuals, is determined. Next, the integer function Q* is evaluated for each
individual S;.

2. At the first step of formation of the next generation (selection), we select individuals that possess
the best suitability. Tournament selection is used [15]. Sequentially, from two neighboring elements S; and
Si;+1 (i = 1,3....) of the current population P, the element with the smallest value of Q* is selected and
placed in the intermediate population P’. After the first run (only half the population P’ has been formed),
the initial population is mixed and the second half of the intermediate population is formed in a similar
manner.

3. All sequential pairs of elements from P’ are subjected to crossing (with probability p.) or remain
unchanged. The mechanism of simple single-point crossing.for the material GA is as follows. Let 4; =
(y1.y2,y3. 1) and Aa = (y.yh.y5.y}) be the “parents” chosen during selection. The point of scetion is
found in a random fashion, and the “parents” generate two “descendants” By = (yi, 5. y5, y}) and By =
(¥} y2, y3. y1) (the point of section is located after the first gene). After this, the “children” are “substituted”
for the “parents” in the intermediate population P.

1. All elements of the intermediate population P’ are subjected to mutations (with probability p,,).
We use the inhomogeneous mutation determined by Mikhalewicz [17]. If a gene y; undergoes mutation, its
new changed value y! is selected in a random fashion within the interval [min;, max;}:

, yi + s(max; —y;)(1 = /L), round (s') = 0,
Y y; + s(min; —y;)(1 = 1/L)®, round (s') = 1.
Here s and 5" are random numbers from the interval [0. 1], round (- ) is a rounding function, { is the generation
number, L is the maximum number of generations, b is a refinement parameter, and min; and max; are
the lower and upper boundarics of variation in the value of the variable y;. In implementation of GA
(evolution), this adaptive mutation allows us to obey the necessary balance between two different-scale
changes (mutations) of genes since at the initial steps of the algorithm, large-scale changes (ensuring a broad
search area) dominate, and at the final step there is a refinement of the solution (by decreasing the scale of
mutations). The refinement parameter b depends on the nature of convergence of the iterative process [9].
After attainment of a stationary state in which the best of the individuals did not change during the last p
generations, the value of b is decreased twice. which extends the search area and eliminates the traps of local
extrema.

To eliminate premature (false) convergence, we use the approach of [9], in which the probability of
mutation of the “descendant” depends on how close the “parents” are among themselves.

For quantitative evaluation of the closeness of the individuals A = (ay.....a,...,a,) and B =

(bi,....bi....,by,) selected for crossing, we use the relative distance between them:
n

‘ 1 a; — bi d
dist(A.B) = - Zl (M) ’

1=
where d is a parameter of the problem. Then, the probability of mutation p,,(A, B) is defined by
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pm(4, B) = pa(1 — dist(A, B)),

where py corresponds to the maximum permissible probability of mutation. In the calculations, we set
d= Pd = 0.2.

5. After completion of mutation, values of the integer function Q* are calculated for the entire popu-
lation P’, and then one of the elements P’ is replaced in a random fashion by the best individual from the
previous generation P (elitism). After that the generation P is completely replaced by the generation P’.

6. If the difference of the integer function inside the current generation is smaller than the prescribed
value of §, the process is completed. Otherwise, it is repeated from step 2.

The method was tested on special test integer functions [9, 15], which, besides a global minimum, have
a great number of local extrema. For example, for the Rosenbrook function

f(z) =100(a? — 29)? + (1 —21)?  (—2.048 < ; < 2.048)

the employed version of GA converged to a global minimum in 96% of 1000 runs with a mean number of
generations of about 2000 in one run. An analysis of the solutions for the test functions indicates the high
convergence, efficiency, and universality of the present method.

Since GA are based on a probabilistic, nondeterministic approach, a solution can be obtained only in
the presence of a sufficient number of runs of the problem. However, even a single run gives information on
the characteristics of the optimal solution. In the present work, we performed not less than 10 runs for each
version. This allows us to state that the solution belongs to the confidence interval.

The integral in the integer function (3) was calculated by an adaptive algorithm based on the Newton-
Cotes formula of the eighth order [19]. As a result, the specified accuracy was attained at a minimum
of calculations of the integrand. On the average, 30 calculations of the heat flux along the trajectory are
required to reach an error of 107°. The total number of calculations of the integer function is equal to
N = N, Ng, where N, = 20 is the number of individuals in the population and Ny, = 2000-4000 is the
number of generations required to achieve the specified accuracy.

Since N, is large, a direct calculation of the heat flux in (3) by numerical solution of the TVSL equations
required large computing costs even in the presence of a highly effective algorithm. Therefore, along with the
exact solution of the problem, we used a two-step approach to the heat flux calculation. At the first step,
we calculated the TVSL equations for specified values of the determining parameters of the problem R*, k,
and k,; using the algorithm of [7] on a 21 x 22 grid with a step AV, = 0.25 kin/sec in the speed range
7.8-2.3 km/sec and with a step AH = 2.5 km in the altitude range 100-50 km. At the second step, the
integer function (3) was calculated by interpolation of the heat flux data using B-spline surfaces of the sixth
order.

The difference between magnitudes of the total heat flux along different trajectories obtained by ac-
curate calculations and the approximate approach described above is not larger than 0.5%, which allows the
approximate approach to be used in series calculations. It should be noted that, providing high accuracy,
this approach, on the one hand, takes into account the dependence of the heat flux on the main determining
parameters of the problem, and. on the other hand, it aceelerates sharply the work of GA on search for the
optimal solution.

Calculation Results. The results presented here were obtained for ideally catalytic surfaces and non-
catalytic surfaces and in the neighborhood of bluntness for the following values of the determining parameters
for characteristic dimensions R* = 0.5 and 1.0 m.:

S*/M =25-10" m/kg, a=3.0. To™ =1500 and 2500 K, % = 0.4 and 1.0,

t* =60 sec, Vp=T7.8km/sec, V" =27km/sec, Hy=100km, H* = 50 kn.

Versions with fixed reentry time 7, were considered. Constraints (4) and (5) were always taken into account.
We note that the constraint on maximum deceleration (5) is stronger than the constraint on overload (2).
Therefore, for the given determining parameters of the problem. constraint (2) was satisfied automatically.
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TABLE 1

Version No. | ", m Surface type quw(Ho, Vi), W/m? | S* /AL, m?/kg | &
1 1.0 | ldeally caialytic 98 516.1 2.5-107* 1.0
2 1.6 Noncatalytic 94 113.8 2.5-107% 1.0
3 0.5 Noncatalytic 122549.7 251077 Lo
4 1.0 Noncatalytic 911138 2.5-1072 1.0
5 1.0 Ideally catalytic 98 546.1 2.5-1072 1.0
6 0.5 Noncatalytic 122549.7 2.5-1072 1.0
7 1.0 Noncatalytic T7919.2 2.5-107% 0.4
TABLE 2
max 3 * -
Version No. To™, @ K
K =5 n=10|n=20n=30|n=5|n=10rn=20{mn=230
1 2500 18.24 26.56 38.01 47.04 1900 1783 1706 1618
1 1500 19.02* 31.03" 47.33" 59.60 1860* 1682~ 1527* 1494
2 2500 11.06 16.78 25.10 33.52 1585 1487 1427 1338
2 1500 11.24° 16.78 25.10 33.52 1555° 1487 1427 1338
3 2500 12.67 20.09 30.61 41.86 1737 1667 1613 1588
3 1500 13.44° 23.43" 42.51* 5R.55" 1712* 1604* 1555* 1530°
! 2500 5.20 R.28 12,40 16.18 1360 1329 1327 12097

* Trajectories with limitation T < T = 1500 K do not exist. The data are given for the trajectory
with minimum equilibrium temperature of the surface.

Since the equilibrium temperature of the body surface T, depends on the characteristic linear dimension
of the problem and the catalytic activity of the surface, for rather low values of T2¥* the initial problem of
choosing the optimal trajectory may not have a solution because it is impossible to satisfy the constraint (2)
on the maximum equilibrium temperature of the surface. Therefore, in the case where the problem of finding
the trajectory with minimum total heat flux with limitation on the maximum equilibrium temperature of the
surface (trajectory with minimum thermal load) had no solution, we posed and solved the problem of finding
the trajectory along which the maximum value of the equilibrium temperature of the body surface at the
stagnation point had a minimum (trajectory with minimum equilibrium temperature).

Results of the calculations performed are shown in Tables 1 and 2 and Figs. 2-5. Table 1 gives values of
the determining parameters of the problem for seven basic versions of calculation. For some of these versions,
Table 2 gives relative values of the integer function Q = Q/(qu(Ho, Vo) - 1 sec) and maximum values of the
surface temperature T along the optimal trajectory. The data are presented for the best of 10 runs in each
version. About 4000 generations are required to reach similarity between individuals with an error of 10~7.

In Figs. 2-4. the results obtained for version Nos. 1, 2, 3, and 7 (Table 1) are indicated by triangles,
crosses, circles, and squares, respectively. The solid curves correspond to T2 = 2500 K and the dashed
curves correspond to 7™ = 1500 K.

Figure 2a and b shows curves of H/Hy(7) (curves 1) and V/V(7) (curves 2) obtained for reentrv times
71 = 5 and 10, respectively, and Figs. 3 and 4 show the equilibrium temperature of the surface T,,(7, i the
relative acceleration V/g(r) for reentry time 7 = 10.

We note that although the total thermal load Q (Table 2) and the equilibrium temperature of the
surface Ty (Table 2; Fig. 3) depend on the characteristic dimension of the body, the ratio of the principal
curvatures, and the catalytic properties of the surface, the trajectories of minimum thermal load (see Fig. 2)
obtained at 7.0** = 2500 K (solid curves) practically coincide for all versions and all reentry times considered.
Indeed, the heat-flux distributions along the trajectory are qualitatively identical. Minimum heat fluxes occur
at the extreme points of the trajectory: at the top, where the incident-flow density po, is minimal, and at the
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bottom, where the speed Vi, is minimal. Therefore, the trajectory of minimum thermal load is constructed
so that the maximum larger portion of the load is in the regions of low densities and low velocities. However,
the constraint on maximum deceleration (5) does not permit one to decrease the speed at high altitudes.
Therefore, on the first segment of the trajectory, maximum deceleration develops (Fig. 4). and on the second
segment there is motion with a nearly minimum speed. The dimensions of these segments are determined by
the value of 7.

The presence of the local maximum of altitude at the second segment of the trajectory also results
from the optimal trajectory (solution) tending to low densities at minimum velocities. This is confirmed by
the calculation results given in Fig. 5, which shows curves of H/Hy(7) (curves 1) and V/Vp(7) (curves 2) for
the basic version Nos. 4-6 (see Table 1) at 7 = 10 and T;™* = 2500 K (crosses, triangles. and circles in
Fig. 5, respectively). It is evident that an increase in §* /A allows one to attain minimum velocities at high
altitudes, which leads to a considerable decrease in thermal load in the neighborhood of the critical point of
the body and to a decrease in the surface temperature.

Thus, in the absence of the constraint on the equilibriwn surface temperature T, the shape of the
trajectory with minimum thermal load is determined primarily by the acrodynamic characteristics of the
spacecraft (ratio S*/A[) and the reentry time 71. The total thermal load Q and the equilibrium temperature
on the surface for the present trajectory depend on the characteristic dimension R* of the body, the ratio of
the principal curvatures, the catalytic properties of the surface, and the aerodynamic properties of the body.

The trajectories with minimum local temperature of the surface (dashed curves in Fig. 2) differ sig-
nificantly from the trajectories of minimum thermal load. Their shapes depend on both the characteristic
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dimension of the problem and the catalytic properties of the surface. Although the maximum surface temper-
ature for these trajectories is lower than the corresponding value for the minimum thermal load trajectories
(dashed curves in Fig. 3), the integral heat flux for them is greater than that for the minimum thermal load
trajectories.

In conclusion, we compare the optimal trajectory of minimum thermal load obtained in the present
work with some other well-known trajectories. Figure 6 shows quasistationary trajectories with gliding
coefficients of 1072 and 2-10~* m?/N [3] (solid and dashed curves with rhombuses, respectively). the optimal
trajectory obtained in the present work and corresponding to the second version (see Table 1) for 7 = 10
and TMax = 1500 K (crosses). the “Space Shuttle” trajectory [13] (triangles), and the “Buran” trajectory
[20] (circles). It is evident that the optimal trajectory computed in the present work correlates well with the
“Buran” trajectory in the altitude range H = 100-60 km (segment of maximum thermal loads).

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01-
00298).
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