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O P T I M I Z A T I O N  O F  T H E  E A R T H  R E E N T R Y  T R A J E C T O R Y  

OF A B L U N T E D  B O D Y  

B Y  T H E  I N T E G R A L  H E A T  F L U X  

V. Yu.  Kazakov,  S. V .  Pe ig in ,  and S. V .  T i m c h e n k o  UDC 533.5:533.6.011 

The papcr deals with optimization of the EaT~h, reentry, trajectow by the magnitude of the 
total convective heat fluzr at the stagnation point of a blunted body. The equations of a thin 
(hypersonic) viscous shock layer taking into account thc noncquilibrium nature of chemical 
reactions and multicomponent diffusion are used as the initial mathematical model for heat 
flux calculations. The @timal solution is obtained by an effective robust method using the 
basic ideas of genetic algorith, ms. 

In t roduc t i on .  As is known, when a body reenters the dense atmosI)heric layers of the Earth, the heat 
fluxes to its surface are very great. Therefore, the design of reusable spacecraft involves the complex I)rol)lem 
of its thermal l)rotection. In this case, the sohltion of the problem of (lecre~sing the level of thernml load 
on spacecraft ilnplies determination of the reentry trajectory and selection of spacecraft design (aerodynanlic 
characteristics, type of heat-protection system, etc.). 

The general solu.tion of the complete problem of trajectory oi)timization by the therlnal load on the 
spacecraft surface reduces to the joint solution of mechanical and g~s-(tynamic problems. The nmchani- 
cal problenl is the optimal control problem fbr tile ordinary differential equations of motion of a material 
point in the atmosl)here [1-4], which includes aerodynamic coefficients. The gas-dynamic t)roblem inchldes 
a calculation of the thre~dimensional flow around the entire surface of the spacecraft taking into account 
physicochemical processes (thernlodynamic and ctmnlical nonequilil)rium, radiatiom etc.), and the aerody- 
namic coefficients of the first problem are evaluated during solution of the s~:ond problem. 

Because it is extremely difficult to solve the 1)resent problem in a comt)lete joint formulation, extensive 
use is made of w~rious at)proximate approaches in which the Inechanical and g~s-dynalnic parts of the problem 
are separated from each other. For the aerodynamic coefficients, various apl)roximations,are emplo.ve(t [2] or 
these coefficients are treated as parameters of the mechanical I)rol)lem that permit one to study the so-called 
reference trajectories. In the optilnization problem, depending on the fornmlation, the integrands fbr the 
integer function are approximations along the trajectory lot the heat flux to the entire surface of the body 
or at sonm points on the body surface (more often, at the stagnation point) [2, 5]. 

The following parameters were determilmd in the present paper. 
1) The reentry trajectory of a blunted body of specified shape into the Earth's atmosphere along which 

the total heat fltLX at the stagnation point of the body has a minilnuni and the equilibrimn temperature of 
the body surface does not exceed a prescribed value. 

2) The trajectory along which the nmxinmm equilil)rium teml)erature of the body surface at the 
stagnation point is mininml. As the initial gms-(lynamic model for (letermining the heat filLX to the body 
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surface, we use tile equations of a thin (hypersonic) viscous shock layer (TVSL) taking into account chemical 
nonequilibrium and multicomponent diffusion. This model gives high accuracy for altitudes of 100-50 km 
and velocities of 8-2.5 km/sec  [6]. The TVSL equations are solved using a highly effective computational 
algorithm [7], which is based on a difference scheme of the fourth order of accuracy [8]. The w~riational 
problem that  arises in determining the optimal trajectory is solved by an effective rotmst method using the 
basic ideas of genetic algorithms (GA) [9, 10]. This method employs the principles of evolution and heredity 
and examines the "population" of possible solutions of the problem that is subjected to the three main 
"genetic" operators - -  selection, crossing, and mutation. 

F o r m u l a t i o n  o f  t h e  P r o b l e m .  We consider the motion of spacecraft that reenters the Earth's 
atmosphere, making the common a.ssumptions for such problems [21: The Earth is a sphere, the gTavitational 
field is central, the ro ta t ion  of the Earth is absent, and the atmosphere is immobile. The trajectory lies in the 
plane of the large circle containing the initial vector (the r ~ n t r y  velocity vector). Variation in the altitude does 
not lead to marked changes in the gravitational force and centrifugal force. The atmosphere is isothermal, and 
the density distribution with  the altitude is defined by the formula p = Po exp(-H/Hm), where Hm = 7.11 kin. 
The reentry is performed from the orbit of an artificial satellite of the Earth (I/b = 7.8 kin/see), thrust is 
absent, and the mass of the spacecraft M is constant. In view of this. the equations of motion for atmospheric 
descent of spacecraft in a moving coordinate system are ordinary differential equations of the third order in 
time (equations of flight dynamics) for the alt i tude H, the speed V, the downrange capability L, and the 
slope of the velocity vector to the plane of the local horizon a under specified initial conditions Ha, V0, L0, 
and a0 at time to and with controls --- the ballistic factor a(t) and the lift-to-drag ratio K(t) [2]. 

The optimization problem is formulated as follows: to find control functions or(t) and K(t) that provide 
tbr a minimmn for the functional 

t~ 

nfin / q(H(t), V(t), R*, k. k,,,i . . . .  ) dt Q(K, tl) (1) (T, 

0 

under the constra ints  

Iv(t)l  < at ,  < T max. (2) 

where q(H(t), V(t), R*, k, ku,i . . . .  ) is the magnitude of the heat flux at the stagnation point on the surface of 
the spacecraft that  moves with speed V(t) at altitude H(t) and has ratio of the principal curvatures k, R* is 
the characteristic linear dimension of the body, 9 is the free-.fall acceleration, kwi (i = 1 . . . .  , N - 1) are the 
known constants of catalyt ic  activity of the surface, and Tw is the equilibrium temperature of the surface at 
the stagnation point. The  constants a and T nu'x are chosen from practical considerations. 

The controls A'(t) and  ~r(t) are piecewise-smooth functions that are deternfined by the type of spacecraft 
("ballistic" type, "lifting-body" type, "space airplane" type, etc.) and the methods of control (using the 
ballistic parameter, angles of attack, etc.) [4]. Therefore, the optimization problem (1), (2) should be solved 
taking into account the particular spacecraft characteristics, which impose limitations on the control law. 

The probletn of optimization of the spacecraft reentry trajectory by the heat flux can be formulated 
differently: in the space of continuous flmctions V(t) and H(t), where 0 ~ t ~< tl,  it is required to find a pair 
of flmctions V(t) and H(t) such that they provide for a minimum for the thnctional 

t t  

- V ( t ) ,  R*,  L.. dt  O(l/\ H, it) = rain �9 (3) 
/ 

0 

under the specified constraints on the maxinnun acceleration and temperature of the body surface (2). 
In problem (2), (3), it is not required to know the design features of particular space, raft, and, in this 

sense, it is more general than  problem (1), (2). However, additional limitations should be imposed on the 
range of admissible walues to elinfinate trivial solutions and solutions that are obviously not integral curves 
of the flight-dynanfies equations [2] and are of no practical interest. The obvious conditions at the boundary 
points are 
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V(0) = 1/~3, H(0)  = H0, V( t t )  = V*, H ( t l )  -- H*, tl ~ t,nax. (4) 

Here tim ree.ntry t ime tl  is constant  or varies from 0 to the maximmn reentry time tm~x and can be an 
optimize(l parameter.  

The other additional l imitations on the range of admissible values of problem (2), (3) are consequences 
of the flight-dynamics equat ions  [2]. In particular,  it is necessary to impose an additional limitation on the 
acceleration, i.e., the (le~eleration cannot t)e greater  than the deceleration cause(l by the maximum drag force 
for a given 1)odv at a prescr ibed altitude: 

S* pV 2 
IVI < ?-7 '_-5- (5) 

Here S* is the characteristic region of the spacecraft.  Under the very general assumptions on the sp~wecraft 
characteristics, the solution of problem (3) subject  to constraints (2). (4), and (5) gives a certain trajectory 
that is I)ossible fi)r an appropr ia te  spacecraft design and suitable methods of control. 

Let us now calculate the  integrand in (3). As the initial" mathematical model for tile calculation of the 
heat flux to the critical point  on tile body surface, we use the TVSL model. Tile TVSL equations are the 
asymptotic forms of Navier-Stokes equations and they describe adequately the flow pattern from tile body to 
the, shock wave for ~ ---+ 0," Re ~ :x~, and K = g Re ~> O(1). Here e = p~/p* is tile ratio of the incident-flow 
density to tile characteristic density in tile shock layer and Re = VR*/#* is Reynolds mmlber (It* is the 
characteristic viscosity in the  shock layer). 

A comparison with more  accurate models and experimental data shows that.  being relatively simple, 
the, TVSL model provides good accuracy (up to 5% for heat fluxes) in the case where the viscous shock layer 
is thin [6]. These conditions arise for altitudes and velocities that correspond to the upper part  of tile reentry 
trajectory in the neighborhood of the critical point of a smooth bhmted body. 

Tile heat flux to the stagnation-point  is defined b,v 

u(H( t ) ,  V ( t ) ,  R*. k, k,,,i . . . .  ) = 0.5pl/ 'aXq(H(t),  V(t) .  R*, k, h:,,,i . . . .  ). (6) 

Here Xq is tile dimensionless heat flux to the surface, which is determined l)y mmmrical solution of the 
TVSL equations taking into account nonequilibriunl chemical reactions in air, multicomponent diffusion, and 
heterogel,eous catalytic react ions [7]. As the conditions on tim boundary of tim body for the energy equation, 
we use the balance relation for the equilibrium temperature.  

The convective heat flux to the critical point of a blunted body is usually determined from tile Fay- 
Riddel formula [11, 12], which is obtained by aI)proxinmtion of numerical calculations of the laminar boundary 
layer near an ideally catalyt ic  surface with equilibrium ctmmical reactions. In this case, the analytic nature 
of the integrand makes tile solution of the optimization problem much simpler. However, the maxinmm heat 
fluxes at the stagnation point  fall in the region of the gliding t rajectory at altitudes of 80-65 kin, where the 
Reynokts nmnbers m'e relat ively small and tile ctmmical reactions are of a strongly nonequilibrium natltre [6]. 
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Figure 1 shows the heat fluxes to the critical point of a sphere with R* = 0.5 m obtained for an ideally 
catalytic surface (curves 1-3) and a noncatalytic surface (curve 4) at  Tw = 1200 K (curves 1 and 2) and for 
the case of equilibrium surface temperature (curves 3 and 4) using the Fay-Riddel formula (curve 1) and 
numerical solution of the TVSL equations (curves 2-4) for the t ra jec tory  of [13] (curve 5 is the speed along 
tim trajectory). A comparison of curves 1 and 2 shows that  calculations using the Fay-Riddel formula give 
an error of up to 40% on the most heat-loaded segment of tile trajectory'. 

M e t h o d  o f  S o l u t i o n .  To solve the optimization problem (3) subject to constraints (2), (4), and 
(5) we employ the method of [9, 10], which includes deterministic and probabilistic approactms and uses 
the main ideas of genetic algorithms [14-16]. The latter are search algorithms based on the mechanisms of 
natural selection and genetics. They combine natural  selection among string s t ructures  with partly ordered 
exchange of infbrmation. Being probabilistic, genetic algorithms are nevertheless not  a version of random 
search because here tile previously obtained information is effectively used in selection of" new points with 

optimal properties. 
These algorithms are iterative. In iteration t (generation t), an ordered set P ( t )  = {x~,.. . , x  tn}is 

considered (population of individuals). Each individual (potential  solution of the problem) is shown in a 
certain, possibly rattmr complex, data structure S. Each solution x~ is evaluated, and the measure of its 
suitability is determined. Next, a new population (iteration or generation t + 1) is formed. 

At the first step of this formation (step of selection) there  is selection of individuals possessing the 
best qualities. At tile next step, some of the selected individuals are transformed by "genetic operators" - -  
mutat ion and crossing. Tile mutat ion operator mi generates a new individual by a relatively small change in 
one individual (mi: S --+ S) ,  and tile crossing operator cj performs stronger transformations and generates a 
new individual by combining parts from several (two or more) individuals (cj : S - - .  S ---+ S). After a number 
of iterative steps, the algorithm converges to tile best of the possible solutions. 

An important feature of genetic algorithms is their robustness: they converge to a global optinnnn, 
which is important for problems whose integer flmction has local extrema.  In contrast  to tile classical gradient 
methods of oI)timization, genetic algorithms do not require strong limitations on the smoothness of the integer 
flmction and allow one to find an optimmn even for the case of a discontinuous integer flmction. 

Genetic algorithms, proposed at tile end of 1960s and substant iated theoretically in 1975 [14], have 
been widely used (by virtue of their universality and high effectiveness) to solve search and oi)timization 

problems in w~rious fields of science an(l engineering [15]. 
To solve tile above problem, we use a version of tile "material" genetic algori thm in which the data 

structure S is a set of strings of finite length, whose components are real numbers. 
The required flnmtions V( t )  and H(t )  are sought in the class of Besier splines of tile ruth order, which 

are expressed in terms of Bernshtein t)olynomials B~'~(t): 

R(r )  = ~ B~n(r)Pi,  B~"(r) = g , i  1 - -~1/ ' C~'' - . i ! ( rn -  'i)[' 
i=o 

R ( r ) = { H ( r ) , V ( r ) } ,  P i = { H i ,  Vi}, i = O  . . . .  ,m ,  O<. r<<. rt .  

Here 7- = t / t* is dimensionless time, t* is tile characteristic time, and Pi are the coordinates of the control 
points. The Besier curve is defined by tile coordinates (Hi, Vi) of the points P/ and the dimensionless reentry 

t ime ft .  
In our case, the first point P0 = (Ho, Vo) and last point P,,,. = (H*, V*) are fixed, and this corresponds 

to conditions (4). Thus, the string S = (al. a,., . . . . .  a2,,,.-,), where 

ai = Hi, 1 <. i <. m. - 1; ai = ~ - m + l ,  m ~ i ~< 2(m - 1); a2m-I = 7"t 

defines tile reentry t rajectory in the class of Besier splines of the ruth order. According to GA, the set S is a 
chromosome and its element ai is a gene. In this case, ai wu'y from the lower bound mini to tile upper bound 
mmxi. To take into account the constraints on tile admissible solutions (2), (5) in the algorithm for searching 

for the optimal solution (3), we used the modified integer function 
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ql § q 2 ( i g ( t ) l / g  - a), Ig(t)l  > ag, 

Q, = q3 q- q4(T~ max - Tw)/T~ 'ax, Tw > Ti, max, 

q5 + q d l r ~ ( t ) l / ~  - S*p(Ov2(t)/(2alg)), L~P(t)l > S*p(t)V2(t)/(2M), 

Q, otherwise. 

The coefficients qi (i = 1 . . . . .  6) were selected so that  with violation of any of the constraints, the vahm 
of the modified integer function (2* was obviously larger than Q. In addition, by choosing qi, it is possible to 
control the relative significance of the constraints. This approach allows one to extend the range of search of 
the solution and to evaluate the integer fimction with violation of the constraints. 

Thus, the method includes the following algorithmic steps: 

1. The initial flight paths are selected in a random fashion, and the initial "population" P(0)  = 
{~ .. SN~}, consisting of Np individuals, is determined. Next, tile integer fimction Q* is evaluated for each 

indt~ idual Sk. 
2. At the first step of formation of the next generation (selection), we select individuals that possess 

the best suitability. Tournmnent selection is used [15]. Sequentially, from two neighboring elements Si and 
Si+t ( i  = 1 , 3  . . . .  ) of the current population P,  the element with the smallest vahm of (2* is selected and 
placed in the intermediate population P ' .  After the first run (only half  the populat ion P '  has been formed), 
the initial t)opulation is nfixed and tile second half of the intermediate  poI)ulation is formed in a similar 

manner.  
3. All sequential pairs Of elenmnts from P '  are subjected to crossing (with probabil i ty p.~) or remain 

unchanged. The nmchanism of simple single-point crossing.for the nmterial GA is as follows. Let Al = 

( ' !Jl , !J2, ' !J3,!Jl)  and A0 = ' ' ' - ( Y l , Y " . ,  Ya, Y~) be the "parents" chosen during selection. The  1)oint of section is 
found in a random fashion, and the "parents" generate two "descendants" Bl (Yl ' ' = , Y2, Y3, !1~) and B~ = 
(Y~, 92, !/3, !/I) (the point of section is located after the first gene). After this, the "children" are "substituted" 
for tile "parents" in the intermediate polmlation P ' .  

4. All elenmnts of the intermediate population P '  are subjected to mutat ions (with probability p,,,). 
We use the inhomogeneous mutat ion deternfined by Mikhalewicz [17]. If a gene Yi undergoes nmtation, its 
new changed vahm !1~ is selected in a random fitshion within the interval [mini, max/]: 

, f Yi + s(maxi - y i ) ( i  - IlL) l', round (,s') = 0, 

'!]i = ~ Yi + s(mini -y i ) (1  - l/L) b, round (s') = 1. 

Here s and s' are random numbers from the interval [0.1], round ( . )  is a rounding flmction, l is the generation 
number, L is the maximum number of generations, b is a refinement parameter ,  and mini and maxi are 
tile lower and upper boundaries of variation in the value of tile ~ r i a b l e  Yi. In implementation of GA 
(evolution), this adaptive mutat ion allows us to obey the necessary t)alance between two different-scale 
changes (mutations) of genes since at tim initial steps of the algorithm, large-scale changes (ensuring a broad 
search area) domim~te, and at the final step ttmre is a refinenmnt of  the solution (by decreasing the scale of 
mutations).  The refinement parameter  b depends on the nature of convergence of the iterativc process [9]. 
After attainment of a stat ionary state in which the best of the individuals (lid not change during the last p 
generations, the wdue of b is decre~sed twice, which extends the search area and eliminates the traps of local 

extrema. 
To eliminate premature  (false) convergence, we use tim approach of [9], in which the probability of 

nmtat ion of the "descendant" depends on how close the "parents" are among themselves. 
For quantitative evahmtion of the closeness of the individuals A = (al . . . . .  a i , . . . , , , , )  and B = 

(bl . . . . .  bi . . . . .  bn) selected for crossing, we use the relative distance l)etween them: 

1 '/..Zl ( a i - b i  ~d 
dist(A. B) = n "= max/ mini / ' 

where d is a parameter of the problem. Then, the probability of muta t ion  p,~(A, B) is defined by 
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pro(A, B)  = pal(1 -- dist(A, B)),  

where Pd corresponds to  the maximum permissible probability of mutation. In the calculations, we set 

d = P d =  0.2. 
5. After complet ion of mutation, values of the integer fimction Q* are calculated for tile entire popu-  

lat ion P~, and titan one of the dements P~ is replaced in a random fashion by tim best individual from tile 
previous generation P (elitism). After tha t  the generation P is completely replaced by the generation p1. 

6. If the difference of the integer function inside tile current generation is smaller than the prescribed 
value of 5, the process is completed. Otherwise, it is repeated from step 2. 

The  method was tes ted on special test integer functions [9, 15], which, besides a global nfinimum, have 
a great  number of local extrema. For example, for the Rosenbrook fimction 

f ( x )  = 100(x 2 - x2) 2 + (1 - xL) 2 (-2.048 ~< xi <~ 2.048) 

the employed version of  GA converged to a global minimum in 96% of 1000 runs with a mean number  of 
generat ions of about  2000 in one run. An analysis of the solutions for the test fiumtions indicates the high 
convergence, efficiency, and universality of the present method. 

Since GA are based on a probabilistic, nondeterministic approach, a solution can be obtained only in 
the presence of a sufficient number of runs of the problem. However, even a single run gives information on 
the characteristics of the optimal solution. In the present work, we performed not less than 10 runs for each 
version. This allows us to  state that the solution belongs to tile confidence interval. 

The  integral in the  intege'r function (3) was calculated by an adaptive algorithm based on the Newton-  
Cotes  formula of" the eighth order [19]. As a result, the specified accuracy was attained at a minimum 
of calculations of the integrand. On tim average, 30 calculations of the heat flux along tim t ra jectory are 
required to reach an error  of 10 -'~. The  total mmlber of calculations of the integer fimction is equal to 
Nc ----- Np N:l, where Np = 20 is the number of in(lividuals in the population and N,j = 2000-4000 is the 
number  of generations required to achieve the specified accuracy. 

Since Nc is large, a direct calculation of the heat flux in (3) by numerical solution of tlm TVSL equat ions 
required large computing costs even in the presence of a highly effective algorithm. Therefore. along with the 
exact  solution of the problem, we used a two-step approach to tile heat flux calculation. At the first step, 
we calculated the TVSL equations for specified values of the determining paranmters of the problem R*, 1~:, 
and k,~,,i using the Mgori thm of [7] on a 21 • 22 grid with a step A I ~  = 0.25 km/sec in the speed range 
7.8-2.3 kin/see and wi th  a step A H  = 2.5 km in the altitude range 100-50 kin. At the second step, the 
integer function (3) was calculated by interpolation of the lmat flux da ta  using B-spline surfaces of the sixth 

order.  
The  diffe;rence between magnitudes of the total heat flux along different trQectories obtained by ac- 

cura te  calculations and the apt)roximate approach described a b o ~  is not larger than 0.5%, which allows the 
approximate  approach to be used in series calculations. It should be noted that,  providing high accuracy, 
this approach, on tim one hand, takes into account the dependence of the treat fltLX on the main determining 
paramete rs  of the problem, and. on the otlmr hand, it accelerates sharply the work of CA on search for the 
opt inml  solution. 

C a l c u l a t i o n  R e s u l t s .  The results presented here were obtained for ideally catalytic surfaces and non- 
cata lyt ic  surfaces and in the neiglfl)orhood of bhmtness for the following ~-alues of the deternfining parameters  

for characteristic dimensions R* = 0.5 and 1.0 m.: 

S*/JlI = 2.5 �9 10 -3 ,n2/kg, a = 3.0, T/,', 'ax = 1500 and 2500 K, L: = 0.4 and 1.0, 

t * = 6 0 s e c ,  V 0 = 7 . S k m / s e c ,  V * = 2 . 7 k m / s e c ,  H 0 = 1 0 0 k m ,  H * = 5 0 k m .  

Versions with fixed reen t ry  time Tl were considered. Constraints (4) and (5) were alwavs taken into account.  
We note  that  the constra int  on maximum deceleration (5) is stronger than the constraint on overload (2). 
Therefore ,  for the given determining parameters of the problem, constraint (2) was satisfied automatically. 
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T A B L E  1 

Version No. R*, m Surfi~ce type 

1.0 Ideally ca~,~dyt ic 
1.9 
0.5 
1.0 
1.0 
0.5 
1.0 

Noncatalvtic 
Nonca talyt ic 
Noncat alytic 

Ideally catalytic 
Noncatalytic 
Noncatalytic 

q,,,(tI., El), W/rn ~ S*/M, m='/kg k 

98 5.1(i. l 
94 113.8 

122 549.7 
91  '113.8  

98 546.1 
122 549.7 
77919.2 

2.5- 10 -:~ 
2.5- 10 -:~ 
2.5. 10 -;~ 
2.5. 10 -2 
2.5.10 -2 
2.5.10 -2 
2.5.10 -:~ 

1.0 
1.0 

1.0 

1 .0  

1.0 
1.0 
0.4 

T A B L E  2 

Version No. 
iIKlx 

T ~  , 

K 

2500 
1500 
2501) 
1500 
2500 
1500 
25(/0 

Wl ----5 

18.2:1 
19.02" 
1 1 . 0 6  

1 1 . 2 4 "  

12.67 
13..I.l* 
5.20 

r ,  = 10 

26.56 
31.03 
16.78 
16.78 
20.09 
23.43 
8.28 

r l  = 20 

38.0 [ 
47.33 
25.10 
25.10 
30.61 
42.51 
12.40 

vL = 30 

47.04 
59.60 
33.52 
33.52 
41.86 
58.55 ~ 
16.18 

rt = 5  

1900 
1860 
1 5 8 5  

1555 
1737 
1712 
1360 

r*~ U 

rt  = 10 vl = 20 

1783 1706 
1682 1527" 
1487 1427 
1487 1427 
1667 1613 
1604 1555" 
1329 1327 

Tt = 30 

1618 
1494 
1388 
1388 
1588 
1530" 
1297 

* Tra.iectori,~ with limitation T~. ~< T,'~'. .... --- I500 K do not exist. The data are given for the trajectory 
with minimum extuilibrium temperature of the surface. 

Since  the equi l ibr ium temt)era ture  of the body  surface T,,, depends  on tim characterist ic  linear d imension  

,~f tile problenl  and tile cata lytk"  act ivi ty  o f  the surf'ace, for ra ther  low wdues o f  T,,~, '~x, the initial probleIn o f  

choos ing  the  optinml t r a j e c t o r y  may not have a solution because it is impossible to sat, ist}" the constra int  (2) 

on the  m a x i n n u n  equi l ibr ium t empera tu re  of  the  surface. Therefore,  in the case where the problem of f inding 

the  t r a j e c t o r y  with m i n i m u m  tota l  heat flux wi th  limitation on the inaximum equil ibrium tempera ture  of  the  

sur face  ( t r a j ec to ry  wi th  m i n i m u m  ttmrmal load) had no solution, we posed and  solved the problem of finding 

tim t r a j e c t o r y  along which  the  max imum vahm of the equilibrium t empe ra tu r e  of tim body  surface at the  

s t a g n a t i o n  point  had a m i n i m u m  ( t rQec to ry  with minimum equil ibrium tempera ture ) .  

Resu l t s  of the ca lcula t ions  performed are shown in Tables 1 and 2 and Figs. 2--5. Table 1 gives values of  

tlm d e t e r m i n i n g  pa rame te r s  o f  the problem ~br seven basic versions of  calculat ion.  For some of these versions, 

Table  2 gives relative wdues  of  the integer funct ion Q = Q/(qw(Ho, V0) �9 1 sec) and inaximum values of  the  

surface  t empe ra t u r e  T* along the opt imal  trajectory.  The  da ta  are presented for the best  of 10 runs in each 

version.  A b o u t  40{}0 genera t ions  are required to reach similarity between individuals with an error of 10 -7  . 

I n  Figs. 2-4,  the  resul ts  obtained for version Nos. 1, 2, 3, and 7 (Table 1) are indicated by triangles,  

crosses,  circles, and squares ,  respectively. T h e  solid curves correspond to T,~ ~• = 2500 K and the dashed  

curves  cor respond  to T~ ~ax --= 1500 K. 

F igu re  2a and b shows curves of H/He(7) (curves 1) and V/Vo(r) (curves 2) obtained for reentrv t imes 

rl --- 5 a n d  10, respectively, and  Figs. 3 and 4 show the cquitil)rium t empera tu re  of  the surface T~,(rj , ,  the 

re la t ive  accelerat ion l)/g(7-) for reentry t ime 7"t = 10. 

VVe note  tha t  a l t h o u g h  the  total thermal  load 0 (%tble 2) and the  cqui l ibr imn tempera ture  of  the  

surface  Tu, (Table 2; Fig. 3) (lepend on the  characteristic dimension of the body,  the ratio of the principal  

cu rva tu re s ,  and the ca ta ly t ic  propert ies  of  tlm surface, the trajectories of  m i n i m u m  therInal load (see Fig. 2) 

o b t a i n e d  a t  ~m,• = 2500 K (solid curves) pract ical ly  coincide for all versions and  all reentry times considered. 

Indeed ,  the  heat-flux d i s t r ibu t ions  along the  t ra jec tory  are quali tat ively identical. Minimum treat fllLXeS occur  

at  t he  ex t r enm  points of  the  t ra jec tory :  at  the  top, wlmre the incident-flow dens i ty  Pcr is minimal, and at the  
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bot tom,  where the speed V~ is nlinimal. Therefore ,  tile t ra jectory of minimmn thermal load is constructed 
so that  the ma.xinmm larger portion of the load is in tile regions of low densities and low velocities. However, 
tlm constraint  on maximunl deceleration (5) does not permit one to decrease the speed at high altitudes. 
Therefore,  on the first segment of the trajectory,  maxinmm deceleration develops (Fig. 4), and on the second 
segment there is nlotion with a nearly minimum speed. The dimensions of these segments are determined by 

the value of 71. 
The  presence of the local maximum of al t i tude at the second segment of the trajectory also results 

from tile optimal trajectory (solution) tending to low densities at minimum velocities. This is confirmed by 
the calculation results given in Fig. 5, which shows curves of H/Ho(r) (curves 1) and V/$~(r) (curves 2) for 
the basic version Nos. 4 6 (see Table 1) at T1 = 10 and T, max ---- 2500 K (crosses, triangles, and circles in 
Fig. 5, respectively). It is evident that an increase in S*/itI allows one to attain nfinimum velocities at high 
altitudes, which leads to a considerabIe decrease in thermal load in the ne, ighborhood of the critical point of 

the body and to a decrease in the surface temt)erature.  
Thus,  in the absencc of the constraint on the equilibrimn surface tenlperature T~,, the shape of the 

t ra jectory with minimum thermal load is determine(1 l)rimarily by the aerodynamic characteristics of the 
spacecraft (ratio S*/M) and the reentry t ime vl. The  total thermal  load (~ and the equilibrium temt)erature 
on the surface for the present trajectory depend on tile characteristic dimension R* of the body, tim ratio of 
the principal curvatures, the catalytic propert ies  of tile surface, and the aerodynamic properties of the body. 

The  trajectories with minimunl local tempera ture  of the surface (dashed curves in Fig. 2) differ sig- 
nificantly from the trajectories of miniinum thermal load. Their shapes depend on both the characteristic 
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dimension of tim prot)lem and the catalytic properties of the surface. Although the maximum surface temI)er- 
ature for these trajectories is lower than the corresponding value for the minimum thermal toad trajectories 
(dashe(l curves in Fig. 3), the integral heat flux for them is greater than  that for the minimum thermal load 
trajectories. 

In coimlusiom we compare the optimal t ra jectory of minimum thermal load obtained in the present 
work with some other well-known trajectories. Figure 6 shows quasistationary trajectories with gliding 
coefficients of 10 -:t and 2- 10-~ m2/N [3] (solid and dashed curves with rhoInbuses, respectively), the optinml 
trajectory obtained in the t)resent work and corresponding to the second version (see Table 1) for rL = 10 
an(1 T,','. 'ax = 1500 K (crosses), tim "Space Shuttle" trajectory [13] (triangles), and the "Buraif" trajt 'ctory 
[20] (circles). It is evident that the ol)timal t ra jectory ('oInl)uted in the present work correlates well with the 
"'Buraif' trajectory in the altitu(le range H = 100-60 km (segment of m~uximum thermal loads). 

This work was supI)orted Iw the Russian Foundation for Fundainental Research (Grant No. 98-01- 
00298). 
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